

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

NMR Study of the Hydrogen Bonding of Sterically Hindered Phenols with Alicyclic Ethers and Pyridine

T. S. Pang^a; Soon Ng^a

^a Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia

To cite this Article Pang, T. S. and Ng, Soon(1974) 'NMR Study of the Hydrogen Bonding of Sterically Hindered Phenols with Alicyclic Ethers and Pyridine', *Spectroscopy Letters*, 7: 8, 377 — 380

To link to this Article: DOI: 10.1080/00387017408067261

URL: <http://dx.doi.org/10.1080/00387017408067261>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NMR STUDY OF THE HYDROGEN BONDING OF STERICALLY
HINDERED PHENOLS WITH ALICYCLIC ETHERS AND PYRIDINE

Key Words: hydrogen-bond chemical shift, enthalpy change, hindered phenols, alicyclic ethers, pyridine

*
T.S. Pang and Soon Ng
Department of Chemistry, University of Malaya
Kuala Lumpur, Malaysia

INTRODUCTION

In a preliminary report¹ it was shown that the hydrogen-bond chemical shift, Δ_{AB} , correlates with the change in enthalpy, ΔH , in the interaction of chloroform with a series of closely related oxygen and nitrogen bases. In this communication, we report the hydrogen bonding parameters for the interaction in cyclohexane medium between 2,4,6-tri-t-butylphenol and tetrahydrofuran, tetrahydropyran and pyridine, and between 2,6-di-1-adamantyl-4-t-butylphenol and pyridine. There is correlation between the Δ_{AB} and ΔH for the same proton donor (2,4,6-tri-t-butylphenol) and the closely related alicyclic bases, and for the same base (pyridine) and the two closely related sterically hindered phenols. The temperature dependence of the Δ_{AB} in these systems is also reported.

EXPERIMENTAL

The procedures for the purification of the materials used, the preparation of the acid base solutions in cyclohexane for the chemical shift measurements, the NMR spectrometer used, and the evaluation of the hydrogen bonding parameters, K , Δ_{AB} , ΔH and ΔS , have been described

previously.² The synthesis of 2,6-di-1-adamantyl-4-t-butylphenol has been described.³ The Δ_{AB} is the difference between the chemical shift of the phenolic proton in the acid base dimer AB and the chemical shift of the free phenolic proton in cyclohexane solution at the same temperature.

RESULTS AND DISCUSSION

The highly hindered phenols are not expected to self-associate in dilute cyclohexane solution, but the bases which can form hydrogen bonds of appreciable strength with them are limited to cyclic ones such as alicyclic ethers and pyridine whose particular geometry can permit the electron donor site to gain access to the hydroxyl proton. The *ortho* adamantyl groups offer more steric hindrance to the approach of a proton donor than do the t-butyl groups, as the alicyclic ethers show smaller extent of interaction with the di-*ortho*-adamantyl-substituted phenol. The Table shows the parameters obtained for the various hydrogen bonding systems.

The Δ_{AB} and ΔH values for the interaction of 2,4,6-tri-t-butylphenol with tetrahydrofuran are significantly different from those for the interaction with tetrahydropyran, the difference no doubt reflects the differences in the basicity of the oxygen donors and the steric hindrance effect of the alicyclic chains in the association. However, there is remarkable agreement in the ratios of Δ_{AB} to ΔH in these two interactions, indicating that the Δ_{AB} correlates with the ΔH for minor structural changes in the base.

In the case of pyridine interacting with the two substituted phenols, the Δ_{AB} and ΔH values are significantly different as a result of the

HYDROGEN BONDING OF STERICALLY HINDERED PHENOLS

TABLE 1
Hydrogen Bonding Parameters obtained in Cyclohexane Medium*

Phenol	Base	^{34}C		ΔH	ΔS	$\Delta_{\text{AB}} / \Delta H $
		K (M^{-1})	Δ_{AB} (ppm)			
2,4,6-tri-t-Bu	Tetrahydrofuran	0.35	1.14	1.21 - 0.0025 t	18.0	67
2,4,6-tri-t-Bu	Tetrahydropyran	0.36	1.02	1.13 - 0.0031 t	15.5	59
2,4,6-tri-t-Bu	Pyridine	0.65	2.93	3.29 - 0.011 t	16.9	59
2,6-di-1-Ad- 4-t-Bu	Pyridine	0.46	2.28	2.55 - 0.0079 t	14.2	53

* Uncertainties: $K \pm 0.02 M^{-1}$, $\Delta_{\text{AB}} \pm 0.02$ ppm, $\Delta H \pm 0.45$ kJ/mol, $\Delta S \pm 2$ $\text{J K}^{-1}\text{mol}^{-1}$.

difference in the steric hindrance effect of the *ortho* substituents, but the ratios of the experimental Δ_{AB} to ΔH are in good agreement, indicating that the Δ_{AB} also correlates with the ΔH for minor structural changes in the proton donor. It is to be noted that in the case of pyridine as base, the experimentally observed Δ_{AB} is not the true hydrogen-bond chemical shift as it contains a component from the aromatic ring current effect of the pyridine.⁴ As the hydrogen bonding to pyridine is stronger in the case of the tri-*t*-butylphenol, the hydrogen bond must be shorter so that the phenolic proton is closer to the pyridine ring where the ring current effect is larger.⁵ The contribution to the experimental Δ_{AB} arising from the ring current effect should therefore be larger in the case of the tri-*t*-butylphenol. It is expected that if this component arising from the ring current effect were subtracted from the experimental Δ_{AB} , the resulting Δ'_{AB} value would yield ratios of Δ'_{AB} to ΔH that are more nearly equal than those shown in the Table for the interaction between the substituted phenols and pyridine. The effect of the ring current effect on the measurement of the hydrogen bonding to pyridine by NMR spectrometry is discussed elsewhere.⁶

REFERENCES

1. K.F. Wong, T.S. Pang and Soon Ng, J.C.S. Chem. Comm., 55 (1974).
2. T.S. Pang and Soon Ng, Spectrochim. Acta, 29A, 207 (1973).
3. Soon Ng, J.C.S. Perkin II, 1514 (1972).
4. P.J. Berkeley, Jr. and M.W. Hanna, J. Phys. Chem. 67, 846 (1963).
5. C.W. Haigh and R.B. Mallion, Org. Magn. Resonance, 4, 203 (1972).
6. T.S. Pang and Soon Ng, submitted to J. Magn. Resonance.

Received June 17, 1974

Accepted July 8, 1974